MathExcel Supplemental Worksheet I: Graphs, L'Hôpital's Rule, and Optimization

1. Consider the function $f(x)=x^{4}(x-1)^{3}$.
(a) Find the critical numbers of f.
(b) What does the second derivative test tell you about the behavior of f at these critical points?
(c) What does the first derivative test tell you?
2. Suppose $f(3)=2, f^{\prime}(3)=\frac{1}{2}$, and $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for all x.
(a) Sketch a possible graph for f.
(b) How many possible solutions does the equation $f(x)=0$ have? Why?
(c) Is is possible that $f^{\prime}(2)=\frac{1}{3}$? Why or why not?
3. Sketch the graph of a function that satisfies all of the following conditions:

- $f^{\prime}(x)>0$ if $x \neq 2, f^{\prime \prime}(x)>0$ if $x<2$,
- $f^{\prime \prime}(x)<0$ if $x>2, f$ has inflection point at $(2,5)$,
- $\lim _{x \rightarrow \infty} f(x)=8$, and $\lim _{x \rightarrow-\infty} f(x)=0$.

4. Find a and b so that

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)+a x+b x^{3}}{x^{3}}=0 .
$$

5. Compute $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+5}{8^{x}}$.
6. Compute $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$.
7. If an initial amount A_{0} of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is

$$
A=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

If we let $n \rightarrow \infty$, we say that the interest is compounded continuously. Consider A as a continuous function of n. Use l'Hôpital's Rule to show that if interest is compounded continuously, then the value of the investment after t years is

$$
A=A_{0} e^{r t}
$$

Hint: You may want to use the natural log to get the equation in a certain form.
8. (a) Show that

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty
$$

for any positive integer n. This shows that the exponential function approaches infinity faster than any power of x.
(b) Show that

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{p}}=0
$$

for any number $p>0$. This shows that the logarithmic function approaches infinity more slowly than any power of x .
9. A right triangle has legs of length 5 and 12. A rectangle is inscribed inside this triangle with sides parallel to the legs of the triangle. What is the maximum area of such a rectangle?
10. Find the point (x, y) on the graph of $y=\sqrt{x}$ nearest to the point $(4,0)$.
11. What angle θ between two edges of length 3 will result in an isosceles triangle with largest area?

