MathExcel Supplemental Worksheet I: Graphs, L'Hôpital's Rule, and Optimization

- 1. Consider the function $f(x) = x^4(x-1)^3$.
 - (a) Find the critical numbers of f.
 - (b) What does the second derivative test tell you about the behavior of f at these critical points?
 - (c) What does the first derivative test tell you?

2. Suppose f(3) = 2, $f'(3) = \frac{1}{2}$, and f'(x) > 0 and f''(x) < 0 for all x.

- (a) Sketch a possible graph for f.
- (b) How many possible solutions does the equation f(x) = 0 have? Why?
- (c) Is is possible that $f'(2) = \frac{1}{3}$? Why or why not?
- 3. Sketch the graph of a function that satisfies all of the following conditions:
 - f'(x) > 0 if $x \neq 2$, f''(x) > 0 if x < 2,
 - f''(x) < 0 if x > 2, f has inflection point at (2,5),
 - $\lim_{x\to\infty} f(x) = 8$, and $\lim_{x\to-\infty} f(x) = 0$.
- 4. Find a and b so that

$$\lim_{x \to 0} \frac{\sin(3x) + ax + bx^3}{x^3} = 0.$$

- 5. Compute $\lim_{x \to \infty} \frac{x^2 + 3x + 5}{8^x}.$
- 6. Compute $\lim_{x \to 1} \left(\frac{x}{x-1} \frac{1}{\ln x} \right)$.
- 7. If an initial amount A_0 of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is

$$A = A_0 \left(1 + \frac{r}{n} \right)^{nt}.$$

If we let $n \to \infty$, we say that the interest is *compounded continuously*. Consider A as a continuous function of n. Use l'Hôpital's Rule to show that if interest is compounded continuously, then the value of the investment after t years is

$$A = A_0 e^{rt}.$$

Hint: You may want to use the natural log to get the equation in a certain form.

8. (a) Show that

$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$

for any positive integer n. This shows that the exponential function approaches infinity faster than any power of x.

(b) Show that

$$\lim_{x \to \infty} \frac{\ln(x)}{x^p} = 0$$

for any number p > 0. This shows that the logarithmic function approaches infinity more slowly than any power of x.

- 9. A right triangle has legs of length 5 and 12. A rectangle is inscribed inside this triangle with sides parallel to the legs of the triangle. What is the maximum area of such a rectangle?
- 10. Find the point (x, y) on the graph of $y = \sqrt{x}$ nearest to the point (4, 0).
- 11. What angle θ between two edges of length 3 will result in an isosceles triangle with largest area?